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Abstract-Bubble condensation in immiscible liquids is associated with the development of 3-phase 
heat exchangers applicable for heat recovery at low driving forces. 

Single bubbles of volatile organic fluids cooling under heat transfer controlled conditions while rising 
freely in water and aqueous-glycerol solutions, were studied experimentally and theoretically. Unlike 
condensation in single component systems the two-component, 3-phase system is characterized by 
condensate accumulation within the confines of the collapsing bubble, which greatly hinders interfacial 
mobility. A finite difference solution in the laminar flow field was achieved by modifying the potential flow 
field to yield convective terms equivalent to the laminar terms in the energy equation. The presence of non- 
condensables is also accounted for. The agreement with experiment is very good, particularly at low Jakob 

Number. 

NOMENCLATURE 

area ; 
specific heat ; 
ratio, liquid to vapor density within the 

bubble, PJP, ; 
heat-transfer coefficient, instantaneous ; 
dimensionless velocity function,@,2 + 

w3vw’, ; 
thermal conductivity ; 
velocity factor for modified potential 
flow ; 
latent heat ; 
pressure ; 
rate of heat transfer; 
bubble radius ; 

t, 
u, 
r! 
W, 
W rn, 

W*,, 

Y9 
2, 

radius ; 
temperature; 
saturation temperature corresponding 
to p*; 
time ; 
velocity component ; 
volume; , 
velocitycomponent ; 
velocity of rise, approach velocity of 
continuous medium ; 
system velocity of rise corresponding to 
jP = 0.5; 
dimensionless radius ; 
axisymmetric cylindrical coordinate, 
directed along axis of symmetry. 

velocity of bubble wall ; 
specific gas constant ; 

Greek symbols 
a, thermal diffisivity ; 

997 
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dimensionless bubble radius ; 
dimensionless velocity of bubble wall, 

dS/dr ; 
initialmolefractionofnoncondensables ; 
dimensionless temperature, (T - T,)/ 

(T* - T,); 
polar angle ; 
transformed polar angle, cos 8 ; 
density ; 
dimensionless time, Fourier number, 
d/R; ; 
dimensionless time appropriate for 
bubble collapse with translatory motion, 
Pe*) Jaz* 
dimensionless velocity potential ; 
velocity potential ; 
dimensionless stream function ; 
stream function ; 
axisymmetric cylindrical coordinate, 
radially directed. 

Subscripts 

R, point of boundary-layer separation ; 

C, cavitational flow ; 
f, final; 

93 noncondensables ; 

L, liquid ; 

0, initial ; 

s, rectilinear flow around a sphere of 
constant diameter ; 

17: total ; 

6 vapor ; 

W, wall ; 

00, infinity. 

superscripts 
* 3 system. 

Dimensionless groups 
Ja, Jakob number @cp AT/R: L) ; 
Nu, Nusselt number (h2R/k) ; 
Pe, PM&t number (w,2R&); 
Pe*, system PM& number (w*,2R&); 
Pr, Prandtl number @cr,/k). 

INTRODUCTION 

DIRECT contact heat transfer with change of 
phase provides the advantage of smaller flow 
rates of the transfer fluid, convenient separation 
of the fluids, and very high heat-transfer coeffr- 
cients These advantages apply, in general, to 
any pair of fluid systems requiring heat exchange, 
when a suitable immiscible transfer fluid is 
chosen. 

Until recently, little research had been under- 
taken on direct contact three-phase heat ex- 
changers, in which one liquid undergoes phase 
change, while dispersed in another immiscible 
liquid Requirements for economical water 
desalination units then motivated research into 
the basic mechanism of evaporation of a volatile 
liquid dispersed in an immiscible liquid, carried 
out by Sideman et al. [l-4], Klipstein [5] 
and Harriott and Wiegandt [6]. However, it is 
obvious that in its practical application the 
transfer agent must operate in a closed cycle, 
and provision must be made to recondense the 
vapors in a heat recovery system Thus far, with 
the exception of several packed bed studies 
[7-91, and perforated exchangers [lo], the only 
work reported on condensing vapor bubbles in 
an immiscible liquid was an heuristic prelimi- 
nary study [l 11. Therefore, a basic study of 
single bubbles is essential for the understanding 
and effective utilization of this important mode 
of heat transfer operation. 

THEORETICAL. 

(a) The model 
The collapsing bubble, as depicted in Fig. 1, 

is assumed to be spherical and rising freely in a 
vertical path. Alternatively, it can be envisioned 
as being at rest with the continuous medium 
moving against it with an approach velocity w,, 
which may be either constant or radius de- 
pendent. 

As has been shown by a number of workers 
[2, 12-14) inviscid flow is a fairly valid assump- 
tion for freely rising bubbles. However, a 
collapsing bubble in a two-component system 
will tend to have a liquid-liquid interface. 
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Under this condition, internal circulation due to 
interfacial viscous effects, is considerably re- 
duced, particularly when a monolayer film of 
condensed liquid is present on the wall. (Harkins 
[lS] notes that the interfacial viscosity between 
water and a monolayer of normal chain alcohol 
is from 104 to 10’ times larger than that of 
water itself) The resulting surface viscosity may 
even arrest circulation, thereby forming, in 
effect, a rigid sphere. Visually, this effect is 
evident from a comparison between pictures 
taken of bubble collapse of single-component 
(pentane-pentane) and two-component (pen- 
tane-water) systems. Consistent with the obser- 

FIG. 1. Schematic of physical model. 

vations of Bankoff and Mason [16] in a steam- 
water system the surface of the pentane bubble 
in pentane liquid is highly irregular when com- 
pared to the smoother interface of the pentane 
bubble in water (Fig. 2, Ref. [ll]). The former 
is typical of gas-liquid interfaces, while the 
latter behavior is more akin to liquid drops. 
Hence, the two-phase bubble will be treated here 
as a rigid sphere and a lam&u flow field assumed 
for the continuous phase. 

The process within the bubble is that of 
volatile vapors condensing upon a thin film 

that is assumed to be continuously draining 
toward the rear of the bubble, where the con- 
densate is accumulated. For such a thin film, 
the outside heat transfer controls all but the 
final stages of bubble collapse (up to 95 per cent 
of the mass condensed). The actual heat transfer 
is assumed to occur at the interface of the bubble 
wall above the angle of separation of the boun- 
dary layer, denoted by 0, For small temperature 
differences (Jakob numbers ~50) which are 
of interest for water-desalination schemes, the 
phenomenon treated here is heat transfer rather 
than liquid inertia controlled. 

(b) Method of solution 
A numerical solution for a laminar flow field 

around a rigid sphere was presented by Hamielec 
et al. [17]. However, a modification of such a 
solution for a contracting sphere would be 
highly untractable when coupled with the 
transient heat transfer problem which in itself 
requires a numerical solution. Hence, it is 
deemed advisable to derive expressions equiva- 
lent to the convective terms in the energy equa- 
tion and circumvent the requirement for a 
solution for the laminar flow field. This is 
accomplished by introducing a velocity factor, 
k,, dependent on the external fluid properties, 
and expressing the velocities in the energy 
equation in terms of the modified potential flow 
field. Griffith [18], was first to recommend the 
incorporation of a velocity factor into the equa- 
tion for steady state heat transfer in potential 
flow in order to modify it for rapidly circulating 
drops. However, unlike his velocity factor defined 
as the ratio of true interfacial velocity and po- 
tential theory velocity, the velocity factor to be 
employed here is defined as that factor yielding 
potential convection terms equivalent to the 
actual laminar convection terms. The validity 
of such an approach has been demonstrated for 
the simple case of heat transfer in laminar flow 
over a flat plate [19]. 

The velocity factor is derived through rela- 
tions with known solutions for steady state heat 
transfer to a sphere. Rearranging Froessling’s 
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semiempirical relation [13] for the Nusselt around a sphere of constant radius. Denoting 
number for steady state heat transfer to a rigid this flow with subscript s, we get 
sphere yields 

Nu = $ (0.25 Pr-*Pe)+ 
$I,= w, (r+$)cos8. (6) 

(1) 

whereas the Nusselt number for steady state This function yields a radial velocity that 

heat transfer to a sphere in potential flow as vanishes at r = R. 

evaluated by Boussinesq [12], is Boundary condition (5b) is satisfied by the 

1 
equation for cavitational or sink flow [20] : 

Nu = -f$ Pet. 

Comparison between equations (1) and (2) 
gives 

k, = 0.25 Pr- + (3) 

which represents the factor by which the potential 
flow solution is “transformed” to that of laminar 
flow around a sphere. 

It must be emphasized that the implementation 
of this factor does not purport to specify the 
laminar flow field around the collapsing bubble, 
but rather to obtain the equivalent convective 
terms associated with the primary (translatory) 
flow. It is assumed the velocity factor derived 
from the above relationships for a sphere of 
constant radius can be applied for the case of a 
varying radius under study here. 

(c) The potentialflowfield 
In terms of the velocity potential 4, the axi- 

symmetric flow must satisfy the Laplacian: 
V’4 = 0 or 

~(r2~)++&~(sin0~)=0. (4) 

The boundary conditions are 

w a4 
ar= W, c0se,-= -w,rsin&r+ 00 

ae (54 

(7) 

here denoted by the subscript c. This function 
generates a velocity field that vanishes at r + CO. 

By superposition, the velocity field 1s thus 
specified by 

which in turn yields the accompanying stream 
function 

sin’ 8 + R2R cos 8. (9) 

It is important to note that at high P&let 
numbers the first terms (4, and II/$ in equations 
(8) and (9) represent the primary flow, while 
the second terms (4, and $3 are associated with 
secondary flow. 

(d) The energy equation and boundary conditions 
The energy equation expressed in axisym- 

metric cylindrical coordinates is given by 

aT aT t+uaw+wg 

a4J -12 z= 7 r=R (5b) where z is the axis of symmetry; o the circular 
radius; and wand u are, respectively, the velocity 

where w, denotes the approach velocity. Boun- components in these directions. 
dary condition (Sa) is satisfied by rectilinear flow Following Boussinesq, equation (10) in the 
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Y 

FIG. 2. Transformation of coordinates. 

o - z coordinates is transformed to the 4, - $, 
coordinate system (Fig. 2) 

B = R/R,, 

i?T 
- = &Jf + 4) 

d2T 
m + 0 

2 a2T 

at -@ 

C 

W, aT 
+ o(u,w, - u,w,) - 2crw, - - 1 - 

dt 89, 
d+ aT 

u; + w; + u,u, - w,w, - --? 1 - 
dt 84, 

(11) 2R w 
Pe E * 

where use is made of the following general rela- 
tionships where T* is the saturation temperature of the 

vapor corresponding to the system pressure, p* ; 

84 1 a* u= --&=--- 

84 1 ati w= -__= ___. 
aZ oam 

T, is the temperature at infinity, and R, is the 
(12a) initial radius. Introducing ky, the final dimen- 

sionless form of the energy equation is 

1 
We now define the following dimensionless 
parameters 

*=T-T, 
T* - T, 
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Note that equation (13) the governing equation 
for the two-component bubble collapse, reduces 
to that of a single-component bubble collapse 
when k, = 1. 

For Pe/2 $ l/(/?k,), the conduction in the 
4, (or 0) direction is negligible in comparison 
with the convection. This implies that the 
ensuing solution is applicable to the (practical) 
range of comparatively high Pkclet numbers 
(> 1000). This assumption greatly facilitates 
the numerical computation required. 

In dimensionless form in the Y - @ co- 
ordinate system, the boundary conditions are : 

@(Y, cp, 0) = 0 (144 

@(Y, ;, z) = 0 (14b) 
@(co, a, z) = 0 W) 

@(O, 0, z) = 0 ;>m% (144 

g (0, a’, 7) = 0 CD,>@> -5 (144 

where @a = 15 cos Or+ Boundary condition 
equation (14e) assumes that no heat transier 
occurs at the bubble wall below the angle of 
boundary layer separation. This assumption is 
based on the fact that heat transfer in the wake 
of a rigid sphere in laminar flow is relatively 
insignificant [21]. 

(e) Bubble temperature-efj^ect of noncondensables 
The presence of noncondensables (usually air) 

within the bubble will reduce the partial pressure 
of the condensing vapors, resulting in a decrease 
in the corresponding saturation temperature. As 
the collapse proceeds, the effect of these non- 
condensables increases until condensation is 
halted, when the temperature difference between 
the bubble wall and the continuous phase de- 
creases to zero. 

For the normal range of bubble size en- 
countered in this study (and in practice), surface 
tension effects on the pressure can be neglected. 
Hence, the pressure in the bubble is taken to 
correspond to that of the system, p*, defined as 

the sum of the barometric and the average 
hydrostatic heads. For the low temperature 
differences, as employed in this study, Boyle’s 
law is applicable for the noncondensable con- 
stituent within the bubble 

P&G - u = Pg,.rw*,f - YLJ) (15) 

where VT refers to the total volume and the. 
indices 9, L and f denote the noncondensable, 
volatile liquid and final state, respectively. By 
a mass balance on the volatile liquid component : 

where VT,, is the initial 

P”,~ and P,,~ denote 
densities corresponding 
respectively. 

Denning 

total volume; and p,*, 
the saturated vapor 
to T*, T,,,, and T,, 

G z PJP, G* z pJp: 

equation (16) yields 

6 = PJP,, 

which, when combined with equation (15), gives 

where fir = Rf/R,. For systems whose operating 
pressure is low relative to the critical pressure, 
G is much larger than unity (about 200 for pen- 
tane), so that : 

With pe = p* - PO, w and P,,J = p* - P,,J 
(where p,,~ = pv, ,), equation (18) reduces to 

P * - P”,W B; - (l/G*) 

P* - P,, = /I” - (l/G*)’ 
(1% 

For the low temperature differences employed 
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here, a linear relationship su&es between tem- 
perature and pressure, and 

P v, w -P”,mIIT,-Tm =@ 

P* - P,. al T* - T, w 
(20) 

which, in combination with equation (19) 
yields 

* = B3 -p: 
w /I3 - (l/G*)’ 

(21) 

For a single-component, two-phase system, 
equation (21) reduces to [22] : 

(22) 

The term l/G* in equation (21) is due to the 
condensed liquid, which accumulates in the 
bubble, in contrast to the singlecomponent 
system, where the condensate merges with the 
continuous phase. In the absence of noncon- 
densables, /I/- = G*-* for two-component sys- 
tems, and /I/ = 0 for the single-component 
system fl, for a typical bubble is obtained 
experimentally. In effect, 8, will vanish as b 
approaches #If, thus halting the condensation 
process. 

The relation for bubble temperature derived 
here, assumes a uniform distribution of non- 
condensables within the bubbles. However 
bubble collapse can induce a pile-up of non- 
condensables at the bubble walk resulting in a 
simultaneous reduction in the wall temperature. 
To analyze this effect, a mathematical model 
incorporating mass convection and diffusion 
is required. Work along these lines is presently 
underway. 

For better physical interpretation, a relation- 
ship between /If and the initial concentration 
of the permanent gas within the bubble is 
presented. Starting with a bubble with an 
initial mole fraction, r, of noncondensables 
subjected to a system pressure, p*, the initial 
pressure of the noncondensables, is given by the 
Gibbs-Dalton law, as 

P 8.0 = P*r* (23) 

The final partial pressure of the noncondensables 
is given by 

P erf =p*-P”,, (24) 

where P”, m is the vapor pressure corresponding 
to T,. Combining equation (23) and (24) yields 

Pu, 0 P* -= 
P#.f P* - Pv,*’ 

(25) 

For small temperature differences (as employed 
in this study) we introduce the simplified 
ClausiusClapeyron equation given by 

(26) 

where i? is the specific gas constant of the vapor. 
Substituting equation (26) into (25) gives 

Pe, 0 RT*’ -=- 
Pg./ LAT. 

(27) 

For the initial state where /I = 1, equation (19) 
reduces to 

~e,o = 6 - (l/G*) 
Pg./ 1 - (l/G*) 

= fi; - $ (28) 

since G* = p Jp$ $ 1 (200 in our system). 
Substituting equation (27) into (28) yields the 
desired relationship 

j?/=($&h+&) . (29) 

Equation (29) shows that bJ depends on the 
concentration of noncondensables, as well as 
the temperature difference. Figure 3 depicts this 
dependency for a dispersed phase of pentane 
(T* = 309°K) for various values of AT. For 
example, an initial mole fraction of noncon- 
densables of r = 0.001 in conjunction with a 
temperature difference of AT = 4°C. yields a 
value of p, = O-235. Obviously, the values of r 
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and AT necessary for collapse, have limits corres- 
ponding to an upper bound of /I/ = 1.0. The 
effect of noncondensables diminishes with a 
reduction of the ratio T/AT. In the extreme case, 
when the ratio vanishes, a pure vapor bubble is 
obtained. 

Initial mole fraction of noncondensobles. r x IO2 

FIG. 3. Dimensionless final radius as a function of air con- 
centration and temperature difference for dispersed phase of 

pentane at atmospheric pressure. 

It is important to note that equation (29) is 
applicable only for a two-component system. 
For a single-component system, the analogous 
relation is given by 

When the ratio r/AT, appearing in equation (30) 
vanishes, a pure vapor bubble is obtained, for 
which [jr = 0. 

(f) The collapse rate 
An energy balance at the wall yields 

kg = pv,,,L~, r=R (31) 

where L is the latent heat. 
The translatory motion of the bubble causes 

the local heat transport at the wall to vary with 
the polar angle, 8. (This suggests that the collapse 
rate is not uniform over the bubble surface. 

However surface tension effects will tend to 
keep the bubble spherical-shaped.) Therefore, 
an integral relation at the wall is assumed: 

tb 

,=,sin8d6 (32) 

where the heat transfer area extends out to the 
separation angle of the boundary layer, f&. 
The collapse velocity is thus given by 

,=,sin8d9. (33) 

0 

We now introduce a modified Jakob number, 
based on the external fluid properties, which 
are assumed constant, corresponding to T*. 

Ja &AT* - Tm) _ kAT 

LP: crLp$. (34) 

In terms of the Boussinesq coordinates, 
equations (33) and (34) yield the collapse 
velocity in dimensionless form 

x (aolalyk=, do. (35) 

(At the forward stagnation point, Q, = i, Y = 0, 
the transformation is singular. This does not 
pose any difficulties in determining the tempera- 
ture field, since the forward stagnation point 
constitutes part of the boundary. However, the 
singularity does preclude evaluation of the 
gradient at the bubble wall at this point, since 
equation (35) considers points on the boundary 
as being part of the temperature field. This 
hinderance can be circumvented by employing 
a Newtonxotes open formula to numerically 
integrate equation (35). By this method, the end 
points are excluded from the calculation of the 
integral.) 

The ratio p:/p,,, which appears in equation 
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(35) is now obtained. By analogy to equation (20) 

where, 6, = PIP,, and pL is assumed to be 
constant. Equation (36) yields 

IIere, V/G, is a given function of T* and Il\T, 
and hence does not vary during the collapse. 

Equations (13), (14), (20), (35) and (37) consti- 
tute the governing set of equations for bubble 
collapse in two-component systems. These were 
solved n~me~~ly to yield 8 and Nusselt 
number as functions of e. Results are given after 
the presentation of the experimental portion of 
the study. 

~XPE~~~~AL ~P~ATUS AND ~C~QU~ 
The experimental set-up is sche~tic~ly 

presented in Fig. 4. The glass column was 10 cm 
dia. surrounded by a square Perspex water 
jacket used for t~~ratu~ control as well as to 
eliminate visual distortion within the ~oiumn. 
The dispersed phase consisted of either pentane 

Thrrmoceupls 
rod 

fred 
V&W 

FIG. 4. Schematic of experimental apparatus. 

or isopentane bubbles; the continuous phase was 
either distilled water or aqueous-glycerol (70 
per cent by volume). In order to ensure that the 
bubbles under study were completely vaporous 
when introduced into the test section of the 
apparatus, the bubble passed through a 7 cm 
layer of mercury maintained at a temperature 
above the boiling point of the volatile phase. 
The aqueous layer was If cm high. A revolving 
trap placed within the mercury layer over the 
injection port, enabled the bubbles to be intro- 
duced separately. The collapse of the single vapor 
bubbles emerging into the test section (the upper 
portion of the glass column) was photographed 
by a hi -speed cin~~rne~ Tem~~ture 
me~urern~~ were obtained by means of ther- 
mocouples combined with differential thermo- 
meters. 

The pertinent dimensions of the bubble were 
measured Frye-by-ace. The measurements 
were then put into a data reduction computer 
program, which fit the data to exponential- 
decay type curves, by employing non-linear 
least squares techniques. The least squares 
residuals were wei~t~ by calculations obtained 
from the standard deviation of the measure- 
ments. Using the fitted curves the computer 
program allowed time-dependent radius to be 
evaluated. 

It was found that most bubbles collapsing in 
water exhibited a constant velocity of rise which 
varied for di~erent bubbles from 170 to 250 
mm/s. By contrast, the velocity of rise for each 
individual bubble collapsing in the aqueous- 
glycerol solution was not constant, showing a 
monotonic decrease during the collapse. The 
overall velocity range obtained for bubbles in 
this viscous medium was 30-300 mm/s~~. 

RESULTS AND DISCUSSION 
In order to present results in a rn~~~ul 

manner, the P&St number for the system will 
be d&&d. The velocity of rise, w$, will be 
taken as that co~~~~d~g to half the initial 
bubble volume, or p3 = & On this basis, the 



1006 J. ISENBERG and S. SIDEMAN 

PtclCt number is designated as 

Pe* = (2R,w*,)/a. 

The dimensionless time, appropriate for bubble 
collapse with translatory motion, is [3] 

t = Pe*)Ja T. 

Out of the 200 bubbles photographed, some 
twenty bubbles randomly selected to represent 
the three systems employed, were analyzed. 

Graphical comparisons between experimental 
and theoretical bubble collapse are shown in 

- Theoretical 

P 
o.4 _ Isopentone-distilled water 

Ju = 17.4 A T = 4.47Oc 

o2 Pe” 6677 w,* = 206 mm/s 

_p, = o-44 Ro =2.36mm 

o Pr=5*89 1 / 1 / / / ~ 

I.0 

0.0 

P 
0.6 

0.2 

0.6 

P 
0.4 

L 

Run No. IW-16 

. 
Jo =13*5 AT =3.46OC 
Pe*=7f351 w,” = 224 mm/s 

& ~0.42 Ro =2056mm 

Pr =5.,89, , , , , , , 

Run No. PW-4 - 

Pentone-dlstilled water 
Jo =16.7 AT = 4.25’C 

Pe*= 12473 We* = 190 mm/s 

p, =o-50 Ro = 4*93mm 

IP/;=4*75 , , , , , , ] 

0 I.0 2.0 3.0 4.0 5-o 

f 

FIG. 5. Comparison between experiment and theory for the 
isopentane-distilled water and pentane-distilled water 

systems. 

Figs. 5 and 6, in terms of the /I-? coordinates. 
As seen in Fig. 5, the agreement between experi- 
ment and theory for the runs in water is especially 
good, indicating the applicability of the theory 
to these practical systems for all the bubble 
sizes (15 c R, < 5 mm). Generally, good agree- 
ment between experiment and theory was noted 
for runs in aqueous-glycerol, in small bubbles 
(R, < 2.3 mm). However the larger bubble 
(shown in Fig. 6) in this system, exhibit experi- 
mental collapse rates that are markedly faster 
than the corresponding theoretical collapse 

Run No. PG-64 
Pentone-aqueous glycerol 

O-Z-- Theoretical 

- -- - Experimental, least squores 

0 ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ 

Run No. PG-2 

P 

0*2- 

0 ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ 

, 
. Run No. PG-38 

Pentone-oqueous glycerol 

I, I1 I I I I I I I 

2.0 4.0 6.0 6.0 IO.0 12.0 

3 

FIG. 6. Comparison between experiment and theory for the 
pen&me-aqueous glycerol system. 
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rates. This indicates that the more viscous 
aqueous-glycerol induces circulation within the 
larger bubbles. This is manifested in two ways ; 
the velocity factor, k,, is increased toward the 
value of unity representing potential flow; the 
angle of boundary-layer separation increases, 
shifting toward the rear, beyond the value of 
Bs = 100” for rigid spheres, used in the theoretical 
calculation. For potential flow, no separation 
will occur and 13~ is equal to 180”. 

Theoretical p-9 curves, calculated by the 
finite difference method, are presented in Figs. 

P 0.4- -.-. 

0*2- &'I 

- Pr=4-75 

O-6 
P 

0.4 

P 

7 and 8, showing the effect of Jakob and PCclet 
numbers on bubble collapse. In generating these 
curves, w, was assumed constant for each bubble ; 
hence, Pe* = Pe. The value of the velocity 
factor (k, = O-149) was taken to correspond to a 
continuous medium of water at the normal 
boiling temperature of pentane. Note that by the 
definition of 2, the abscissa in Figs. 7 and 8 
contains the Pe and Jc numbers, which tends 
to obscure the physical interpretation of the 
results. However, this presentation is advan- 
tageous as it allows comparison with an approxi- 

-No noncondensobles 

Ju=IO 

0.6 

/3 
0.4 

P 

0.2 
t 

Pe =20000 

Pr =4*75 
I I I I I 

0 I.0 2.0 3.0 4.0 

FIG. 7. Effect of P&l& number on bubble collapse. FIG. 8. Effect of Jakob number on bubble collapse. 
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mate analytical solution for bubble collapse 
in the absence of noncondensables, also included 
in these figures. This solution is obtained in a 
manner analogous to the analytical treatment 
of bubble collapse in single-component systems 
[19]. Briefly, this is accomplished by assuming 
quasi-steady state heat transfer along with 
potential flow around the sphere with an 
approach velocity of kvw,, which yields : 

For kv = 1, equation (38) reduces to the 
approximate solution for single component 
systems [19]. 

Also included in Figs. 7 and 8 is a curve 
representing a typical solution for collapse in 
the presence of noncondensables. The effect of 
PC&t parameter on bubble collapse is shown 
in Fig. 7, indicating that bubble collapse is 
faster at higher Pe numbers which represent 
higher convection rates and thinner thermal 
boundary layers. The proximity and/or simi- 
larity of the shape of the finite difference curves 
to the analytical-albeit approximate+uasi- 
steady state solution indicates that at high Pe 
numbers, the heat transfer regime is fairly close 
to steady state. 

In general, bubble collapse consists of two 
stages of heat transfer. The first stage is a 
transient mode where the thermal boundary 
layer is developing. This stage manifests itself 
by a decrease in the collapse rate. The second 
stage is characterized by steady-state heat 
transfer, i.e. a constant heat flux at the wall. For 
this period, the curves show a monotonically 
increasing collapse rate, corresponding to the 
increasing ratio of interfacial surface area to 
bubble volume. In accordance with these obser- 
vations, large PC&t numbers increase the 
dominance ofthe second stage on bubble collapse. 
as seen, for example, in Fig. 7 for Pe = 20000. By 
contrast, the curve representing Pe = 1000 
shows the first stage to dominate a large part of 
the collapse process. 

Figure 8 shows the effect of the Jakob number 

on bubble collapse. As is to be expected, bubble 
collapse is slower at lower Ja numbers, which 
may be taken to represent smaller temperature 
differences. 

It is evident that for a given system, the effect 
of increasing the Ja number corresponds to an 
increase in AT; hence to a thickening of the 
thermal boundary layer. Conversely, low Ja 
numbers imply thin thermal boundary layers. 
and a tendency to attain steady-state in a rela- 
tively short period of time. The curve for Ja = 1 
shows that steady-state dominated bubble col- 
lapse produced by the correspondingly low AT. 
By contrast, the curve representing Ja = 50 
indicates a dominant period of transient heat 
transfer due to the thick thermal boundary layer, 
corresponding to large AT This effect will be 
amplified at low Pe number, say 1000, coupled 
with Ja = 50, which will result in an extremely 
thick boundary layer. This coupling demonstrates 
the interrelated effect of these two parameters 
on the collapse rate. A low Pe or high Ja number 
yields a relatively large period of transient heat 
transfer, while a high Pe or low Ja number 
results in a dominant period of steady-state 
heat transfer. 

The presence of noncondensables lowers the 
vapor pressure and, hence, the saturation tem- 
perature of the vapor. As the vapor condenses, 

0.6 - 

B - 

No noncondenaables 

FIG. 9. Effect of final dimensionless radius on bubble 
collapse. 
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this effect becomes increasingly pronounced 
until collapse is arrested, when the saturation 
temperature decreases to a value equal to the 
approach temperature, T,, of the external 
phase. Thus, the extent of collapse is also affected 
by the temperature difference employed in the 
system. 

Jo=10 

Pe=5000 

Pr=475 

Two component 

FIG. 10. Comparison between bubble collapse of single- and 
two-component systems. 

In the analytical treatment of bubble col- 
lapse, the presence of noncondensables was 
accounted for, in terms of fif, the final dimen- 
sionless radius. Figure 9 shows the effect of 
noncondensables on the collapse rate for a two- 
component system for values of fis ranging from 
0.7 down to l/G**, the lower value being 
appropriated for a pure vapor bubble. As seen, 
collapse is halted when j? decreases to a value 
equal to fiP Higher values of pf signify a more 
pronounced effect of noncondensables resulting 
in reduced collapse rates. 

A comparison between single (pentane) and 
two-component (pentanewater) systems is de- 
picted in Fig. 10, for a typical set of Pe and Ja 
numbers. It is evident that in terms of the di- 
mensionless /I - Z coordinates, bubble collapse 
is faster for the single-component system. This 
is as expected since the single-component 
system is in pure potential flow, whereas the 
two-component system has an immobile bubble 

wall. However, for a given initial bubble size, 
and given identical temperature differences and 
velocities of rise for the two systems, the physi- 
cally measured rate of collapse, A, may be faster 
in the two-component system than that obtained 
in the corresponding single component system. 
This is due to differences in external fluid 
properties. Thus, for example, with identical 
initial radius, temperature differences and velo- 
cities of rise, pentane bubbles collapse in water 
approximately 50 per cent faster than pentane 
bubbles collapsing in pentane. 

Pe=5000 

Pr=4.75 

- No noncondensables 
--- p,;o.4 

---- Approximate solution 

0 

FIG. 11. Representative theoretical curves for the titne- 
dependent Nusselt number. 

Representative theoretical curves for the 
time dependant Nusselt number, defined as 

(39) 

are given in Fig. 11, for various values of the 
Jakob number. As it is to be ehpected, high Pe 
or Ja numbers yield high heat transfer rates. 

REFERENCES 

1. S. SIDEMAN and G. HIRSCH, Israel J. Tech. 2(2), 234 
(1964). 

2. S. BDBMAN, G. HIRSCH and Y. GAT, A.Z.Ch.E. Jl11(6), 
1019 (1965). 

3. S. SIDWAN and J. ISENLIWG, Desalination 2, 207-214 ._ _ _-. 
(1967). 



1010 J. ISENBERG and S. SIDEMAN 

4. S. SIDEMAN and Y. TAITEL, Int. J. Heat Mass Transfer I, 
1273 (1964). 

5. D. K~IPST&. DSc. Thesis, MIT., Cambridge, Mass. 
(1963). 

13. V. G. LEMCH, Physiochemical Hydrodynamics. Prentice- 
Hall, New Jersey (1962). 

6. P. HARRIOV and H. WI~A~T, A.I.Ch.E. JZ 10(S), 
755 (1964). 

7. V. C. RAI and K. L. PINDER, Can. J. Chem. Engng 45, 
170 (1967). 

8. C. R. WILKE, C. T. CHENG and J. W. WESTATER, A.I.Ch. E. 
JI 7(4), 578 (1961). 

14. E. RUCKBNSTEIN, Chem. Engng Sci. 10,22-30 (1959). 
15. W. D. HARUNS, The Physical Ch~istry af Surface 

Films, Reinhold, New York (1952). 
16. S. G. BANKOW and 1. P. MASON, A.I.Ch.E. Jl g(l), 

30 (1962). 

9. T. K. SHERWOOD and F. A. L. HOLLOWAY, Trans. 
A.I.0z.E. 36,39 (1940). 

10. P. T. WALKER, I. NEWSON and K. D. B. JOHNSON, 

Desulinarion 2, 196-206 (1967). 
11. S. SIDEMAN and G. HIRSCH, A.I.Ch.E. JZ 11(6), 1019 

(1965). 

17. A. E. HAMIELBC, T. W. HOFFMAN and L. L. Ross, 
A.I.Ch.E. JI 13(2), 212 (1967). 

18. R. M. GRIFRTH, Chem. Engng Sci. 12 198-213 (1960). 
19. J. ISENBERG, D.Sc. Thesis, Technion- Israel Inst. Tech., 

Haifa, Israel (1969). 
20. L. M. M~~~E-THo~~~, Theoretical ~ydrody~mics, 

5th ed. Macmillan, London (1968). 

21. K. LFB and H. BARROW, ht. J. Heat Mass Transfer 11, 
1013-1026 (1968). 

12. M. J. Bouss~~~sp, J. Math. Pures Appl. Ser. 6, 1, 310 22. D. D. WITTKE and B. T. CHAO, J. Heat Transfer 89, 
(1905). 17-24 (1967). 

TRANSPORT DE CHALEUR PAR CONTACT DIRECT AVEC CHANGEMENT DE PHASE: 
CONDENSATION DE BULLES DANS DES LIQUIDES NON-MISCIBLES 

@sum&-La condensation de bulles dans des liquides non-miscibles est associee au developpement 
d’echangeurs de chaleur a trois phases applicables a la resuperation de la chaleur pour de faibles forces 
d’entralnement. 

Des bulles isotees de fluides organiques volatils se degonflant sous des conditions control&es de transport 
de chaleur lorsqu’elles moment librement darts de l’eau et des solutions aqueuses de glycerol ont dtt 
ttudiees experimentalement et thtoriquement. A la difference de la condensation dans des systemes a 
constituant unique, le systeme 21 trois phases et a deux constituants est caracterise par l’accumulation de 
condensat au voisinage de la bulle qui se degonfle, ce qui emp&he grandement la mobiliti: interfaciale. 
Une solution par differences finies dans le champ de l’ecoulement laminaire a tte obtenue en modiliant le 
champ de l’ecoulement potentiel pour fournir des termes de convection equivalents aux termes laminaires 
darts l’equation de l’tnergie. On a tenu compte egalement de la presence de gaz non-condensables. L’accord 

avec I’exn&ience est tres bon, pa~icuIi~rement a de faibles nombres de Jacob. 

WARMEUBERGANG MIT PHASENANDERUNG : 
TROPFENKONDENSATION IN UNMISCHBAREN FLUSSIGKEITEN 

Zuaammenfaassml-Die Kondensation von Blasen in einer mit dem Blasenkondensat unmischbaren 
Fliissigkeit hlngt mit der Entwicklung von Drei-Phasen-W~rmetau~hern zusammen, die zur Warmege- 
winnung bei kleineren Tem~raturge~llen dienen. 

Einzelne Blasen von ffiichtigen organischen Stoffen, die beim Aufsteigen in Wasser oder in einer Wasser- 
Glycerin-Losung kondensieren, wurden experimentell und theoretisch untersucht. Die Kondensations- 
geschwindigkeit wird dabei von der Warmeabfuhr bestimmt. Im Gegensatz zur Kondensation in Ein- 
Komponenten-Systemen wird das Zwei-Komponenten-, Drei-Phasensystem charakterisiert durch eine 
Akkumulation von Kondensat innerhalb der kondensierenden Blase, wodurch die Beweglichkeit der 
Grenzfliiche stark vermindert wird. Mit Hilfe eines Differenzenverfahrens wurde eine Msung im laminaren 
Str~mungs~reich ermittelt, indem die Potentials~~mung in der Weise abgewandelt wurde, dass 
konvektive Glieder Bhnlich den laminaren Gliedem in der Ener~egleichung erhalten werden. Die 
Anwesenheit von unkondensierbaren Gasen wurde beriicksichtigt. Die Ubereinstimmung mit dem 

Experiment ist, besonders bei niedrigen Jakobzahlen, sehr gut. 
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aKCnepHMeHTaJIbH0 II TeOpeTWIeCKLl HCCJIeROBaJIIJCb e&klHINHbIe ny3bIpbKH JleTy'illX 

OpraHWfeCKtlX WlRKOCTefi, KOHJteHCMpyIOWHXCH B yCJIOBWIX, KOHTpOJIHpyeMbIX nepeHOCOM 

TenJIa BO BpeMH CBO60~HOrO nOJI'beMa B Bone MBORHO-IYIHqepItHOBbIX paCTBOpaX. R npOTW 

BOnOJIOFKHOCTb KOHAeHCaqHR B OAHOKOMllOHeHTHblX CHCTBMaX, J(BYXKOM"OHeHTHaH TpeX- 

@asKaH CHCTeMa xapaKTepK3yeTm HaKOnneHHeM KOHAeHCaTa B npenenax KOHAeHCHpyIO- 

werow nyanpbKa, YTO 3HaYIITeJIbHO yMeHbIIIaeT nOABI0KHOCTb nOBepXHOCTH pa3neJIa. 

nOJIyYeH0 peLIIeHAe B KOHeqHbIX pa3HOCTRXB nOJIe JIaMHHapHOrOTe~eHMR nyTeM M3MeHeHBR 

nOJIFI nOTeHIJklaJIbHOI'0 TeYeHWI AJIFI nOJIy=IeHWI KOHBeKTRBHbIX WIeHOB, 3KBMBaJIeHTHbIX 

JIaMIlHapHblM WIeHaM B ypaBHeHHR 3HeprHH. YYHTbIBaeTCR TaKH(e HaJIWIlle HeKOHAeHCIJ- 

pyeMbIX ny3bIpbKOB. nOJIyqeH0 XOpOIIIee COrJIaCOBaHMe C aKCIIepHMeHTOM, B OCO6eHHOCTLi 

npH MaJIOM 3HaYeHMkl wtcna FIKoBa. 


